

American Institute of Aeronautics and Astronautics

092407

1

Closing the Certification Gaps in

Adaptive Flight Control Software

Stephen A. Jacklin1
NASA Ames Research Center, Moffett Field, CA, 94035

Over the last five decades, extensive research has been performed to design and develop

adaptive control systems for aerospace systems and other applications where the capability

to change controller behavior at different flight conditions is highly desirable. Although

adaptive flight control has been partially implemented through the use of gain-scheduled

control, truly adaptive control systems using learning algorithms and on-line system

identification methods have not seen commercial deployment. The reason is that the

certification process for adaptive flight control software of this kind for use in national air

space has not yet been decided. The purpose of this paper is to examine the gaps between

the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight

control system software and what will likely to be needed to satisfy FAA certification

requirements. As these major certification gap areas are presented, a description of the

current state of the verification methodologies, and what further research efforts will likely

be needed to close the gaps remaining in current certification practices will be discussed. It is

envisioned that closing the gaps will require advances in hybrid simulation methods, the

development of new methods to analyze learning algorithm stability and convergence rates,

the development of performance metrics for adaptive controllers, the application of formal

software assurance methods, the application of on-line software monitoring tools for

adaptive controller health assessment, and the creation of a certification case for adaptive

system safety of flight.

Nomenclature

A, B = matrices
e = error vector
f = generic function
P, Q = generic symmetric positive-definite matrix
u = control vector
uAug = control augmentation vector
V = Lyapunov function
w = weight of neural network
x = state vector
y = measurement vector

I. Introduction

ver the last five decades, extensive research has been performed to design and develop adaptive control
systems for aerospace systems and other applications where the capability to change controller behavior at

different operating conditions is highly desirable. An adaptive controller changes its behavior by allowing the
controller forward or feedback gains to be effectively adjusted once the controller has been placed into operation.1-5
Because designing such a controller introduces many complexities, it is generally held to be good practice to use a
non-adaptive or "classical" controller design if one can be found that delivers acceptable performance. This is
because although proven techniques to evaluate the dynamic response and controller stability exist for non-adaptive
controllers (e.g., root-locus, Bode plots, Nichols charts, etc.6,7), techniques for adaptive systems are only yet in their
infancy.

1 Aerospace Engineer, Intelligent Systems Division, Moffett Field, CA 94035, Senior Member AIAA.

O

American Institute of Aeronautics and Astronautics

092407

2

The only adaptive flight controllers that are certified for use in national air space are generally those that involve

the use of a technique called gain scheduling.6 To implement this scheme, a non-adaptive controller is designed for
a specific flight condition and vehicle configuration. The controller feed forward and/or feedback gains are then
optimized for this flight condition. In simulation of the controller, the gains are tested at other flight conditions. If
the performance is no longer good, new controller gains are computed. The perturbation of the flight conditions is
repeated until the full flight regime is covered. The controller gains calculated for the various operating conditions
and aircraft configurations are stored in a computer look-up table. The flight control computer is programmed to
select the correct gains based on the current flight condition (airspeed, altitude, etc.) and vehicle configuration. The
utility of this approach, from a certification point of view, is that each set of controller gains can be verified and
validated by simulation and flight testing at the specific flight conditions for which they were chosen. Gain-
scheduling thereby offers a means of partial adaptive control capability, while avoiding many of the problems
associated with continuously changing controller gain values. By using a fine enough grid of flight conditions and
vehicle configurations, virtually any pre-defined set of flight conditions can be handled using the gain scheduling
method. The success of the gain scheduling method depends in large part on the degree to which the system can be
characterized to operate at discrete flight conditions. For example, a few regimes could be airplane take-off, ascent
phase, stead-state flight phase at a few altitudes, descent, and landing.

The focus of this paper does not concern the certification of gain-scheduled flight controllers, but rather a new
breed of adaptive controllers that use system identification or some form of on-line learning to identify the optimal
controller gain settings, system transfer matrices, or stability derivatives in real-time. Adaptive flight control
systems of this type are currently being developed to help pilots recover from aerodynamic upset conditions,8,9 to
regain vehicle handling qualities and stability in the event of aircraft damage or control surface failure10, to
automatically fly vehicles autonomously in both air and space environments11-15, to maintain vehicle performance
during changing operating environments through use of neural networks,16-18 and to guide munitions to their
targets19. These types of adaptive flight control systems must operate in highly non-linear and non-deterministic
environments. Gain-scheduled control cannot be effectively used for these applications because the specification of
all upset flight environments, the degree of control surface failure, or extent of aircraft or engine damage would
require gain sets for an infinite number of flight conditions. Instead, for these applications, it is more efficient to
assume the structure of the controller and use learning algorithms or on-line system identification methods to obtain
the locally valid controller gain parameters.

Figure 1 provides a notional diagram of an adaptive control system to illustrate two possible ways to implement
adaptive control.20 In one way, a learning algorithm is used to compute flight control inputs to augment the controls
produced by a non-adaptive flight controller. The other approach shown is to use a system identification algorithm
to calculate gain parameters used by the flight controller. In this representation, the controller gains are not
explicitly shown, but reside inside the flight controller box. The arrow through the box indicates the modification of
the gain parameters inside the flight controller. It is possible to introduce adaptation using both methods at once and
other schemes to introduce adaptive behavior are certainly possible.

Although the potential benefits of adaptive flight control systems are substantial, no adaptive flight control
systems have been certified by the Federal Aviation Authority (FAA) for use in the national air space. The reason is
that the means whereby adaptive flight control software can be routinely verified, validated, and certified for use in
national air space has not yet been decided. As will be shown in the next section, the FAA has endorsed the use of
RTCA DO-178 to provide certification guidelines for all flight software. Although software techniques exist to
verify and validate conventional flight control software, the means to provide sufficient assurance of adaptive flight
control software functionality, reliability, safety, and the absence of unintended functionality remains to be
determined. If an adaptive flight controller is designed to make rapid and automatic adjustments to correct some
diagnosed malfunction, it also has the ability to make a healthy aircraft un-flyable in the event of controller software
failure. In a military application over restricted air space, such failures may be tolerated if not too high, but for a
commercial application in civilian air space, such failures are unacceptable. Adaptive control systems with learning
software will therefore never become part of the future unless it can be proven that the controller software is highly
safe and reliable.

The objective of this paper is to examine the challenge areas that need to be addressed to enable the certification
of adaptive flight control software for use in civilian air space. These are the gaps between the state-of-the-art
methodologies used to certify conventional (i.e., non-adaptive) controller software and what is likely to be needed to
satisfy FAA certification requirements.

American Institute of Aeronautics and Astronautics

092407

3

Fig. 1 Some ways to make a flight controller adaptive.

II. Where are the Certification Gaps ?

In the United States, the authority responsible for certifying flight control software is the Federal Aviation
Administration (FAA). The FAA has stated in Advisory Circular 20-115B that all flight critical software must be
developed according the guidance provided in RTCA DO-178B21 or show compliance to airworthiness standards
using some alternate means of compliance. Since the alternate means of compliance are undefined, the statements in
DO-178B are generally regarded as certification requirements, rather than as mere guidelines. The objective of DO-
178B is to help the aviation community develop flight software that can perform its intended functions while not
negatively impacting other systems or the safety of aircraft operations. The document is maintained by the RTCA
(Radio Technical Commission for Aeronautics) which is a private association of over 250 aeronautical organizations
(established 1935).

DO-178B is not a process guide to software certification, but rather a description of what high-quality software
development processes should be put in-place in order to create airborne software that performs its desired function.
It levies no special requirements for adaptive flight control software; it is meant to apply to all airborne software. If
it can be adequately demonstrated that these processes have been correctly and appropriately implemented, then any
such flight software is, in principle, certifiable. This section highlights the specific guidelines recommended by
RTCA DO-178B that, in the author’s view, are potentially difficult for adaptive flight control software to fully
satisfy. These areas indicate where the gaps are reside and what infusion of new verification and validation
techniques and methods might be needed to close them.

Table 1 provides a generalized summary of the basic DO-178B guidelines. This list has been generated by the
author and is not intended to serve as a comprehensive index to the standard since it combines the intent of similar
topics under general headings. However, it is useful for discussion purposes. The first column provides a list of the
guideline categories or processes called for in DO-178B. The second column indicates which of these are more
difficult for adaptive flight control software. So, for example, the first guideline, “provide an overview of the
system and target application software”, is marked “No” in the second column because this task is not more difficult
to perform for adaptive flight control software than for conventional flight control software. As can be seen from
the table, the majority of the guidelines do not present special problems for adaptive control software; they are
equally difficult for non-adaptive flight software.

The rows marked with the "YES" designation in column 2 of Table 1 help identify the gap areas impeding the
certification of adaptive systems. Defining software performance requirements is difficult due to lack of metrics to
assess adaptive controller performance. Providing a software verification plan is difficult because it is hard to
specify all possible failure modes of an adaptive controller in a highly nonlinear and non-deterministic environment,

American Institute of Aeronautics and Astronautics

092407

4

and know the anticipated or expected behavior beforehand. Software requirements are difficult to specify because
knowledge of how much learning is enough to provide good control is usually not known. All of these make
determination of test cases to verify software function difficult.

Some airborne software developers argue that there is no guideline in RTCA DO-178B that cannot be satisfied
using the same software assurance methods as are presently used for non-adaptive flight software.22 First, since DO-
178B does not provide metrics to assess the adequacy of the verification and validation plans, it is somewhat of a
judgment call to know when verification and validation plans are sufficient. This function is given to the DER
(Designated Engineering Representative) who negotiates the certification process with the FAA and the software
vendor. Second, it is argued that adaptive controllers behavior is only more difficult to prove because of the non-
deterministic environments in which the software is designed to operate. This view, however, is not a systems
approach; that is, the non-determinism cannot be ignored, regardless of the source.

The remaining sections of this paper discuss major gap areas in regards to the certification of adaptive flight
control systems. Each of these sections describes a major gap area, presents a description of the present day state-
of-the-art in these areas, and cites what further research efforts will likely be needed to close the gaps in the
certification process. As shown in Table 1, most of these gaps generally fall under the DO-178B guidelines related
to the development of the software verification plan. The software verification plan and verification tests provide a
description of each activity in the software verification process. Generally, software verification is comprised of
software review, software analysis, simulation, and testing. These activities may include the use of software
programming checklists and formal software analysis and testing methods. Software analysis methods can include
formal methods, static analysis, code reviews, traceability analyses, and coverage analyses.20 The software
verification plan establishes the rational for the development of software test cases and methods.

Table 1: List of DO-178B Guidelines for Software Certification

DO-178B Guideline Topic
More Difficult
for Adaptive
Systems ?

Provide an overview of system and target application of software No

Provide an overview of what the software does No

Identify the software lifecycle No

Define the software performance requirements Yes

Provide a Software System Safety Assessment (SSA) Report. Lists all
software failure modes and conditions and categorizes by failure severity

No (but more
complex)

Provide a Software Development Plan No

Provide a Software Verification Plan Yes

Provide a Software Configuration Management Plan No

Provide a Software Quality Assurance Plan No

Define Software Requirement Standards No

Define Software Design Standards No

Define Software Code Standards No

Define Software Requirements and all Derived Requirements Yes

Software Design and Traceability Document No

Provide Tool Qualification Data (e.g., autocoders, compilers) No

Provide Source Code No

Provide Executable Object Code No

Provide Software Verification Test Cases and Procedures Yes

Provide Software Verification Results No

Provide Problem Reports No

Provide Software Configuration Management Records No

Provide Software Qualify Assurance Records No

Provide Plan for Software Aspects of Certification (PSAC) Yes

Provide Software Accomplishment Summary No

Provide Software Life Cycle Data Yes

American Institute of Aeronautics and Astronautics

092407

5

III. Gap in Defining Adaptive Controller Requirements

A critical gap which needs to be closed to facilitate certification is to develop procedures and methodologies to
completely and correctly specify the design requirements of adaptive flight controllers. These software
requirements define as precisely as possible what the software is supposed to do. DO-178B recommends that all
requirements be written in a manner that allows them to be tested and may include such things as performance,
precision, accuracy, and timing constraints. The requirements are frequently decomposed into derived requirements
to address such considerations as computer speed, memory size, interfaces, and frequency of inputs and outputs.
Non-adaptive controller performance requirements are usually specified by well-known metrics such as gain margin
and phase margin.6 In contrast, the requirements for adaptive controller performance are usually only easy to
express in overall desired properties, but not using precisely defined metrics.

A. Current State-of-the-Art

Most software life cycles (development through deployment) begin with an analysis to carefully define the
software requirements as shown in Fig. 2. The left side shows the steps used to transform the requirements into
software code. The right side shows the steps of software integration and testing to make sure the code ultimately
satisfies the software requirements. The process of testing the performance of the final code against the defined
software requirements is called software validation. This is the meaning of the second "V" in the often used
acronym "V&V" for verification and validation. (The word validation is also often used in connection with model
validation, but that is a very different process consisting of comparing the output of a model-based simulation
against measured data.) Software verification is the analysis and testing processes used to ensure the software code
does what it was designed to do. But proper verification testing does not imply successful validation testing.

The most common reason software fails validation testing is that the requirements are incompletely or poorly
defined. Software developers may follow a verification process that proves that the software does exactly what it
was designed to do algorithmically, but then discover that it does not meet the functional needs for control because
of improper specification of the requirements at the outset. Such failures are very expensive to correct because
when an error is found late in the validation process, the entire software design, verification, integration, and
validation process shown in Fig. 2 must be performed all over again.

B. Further Research Needed

Certification of adaptive control systems will be significantly aided by the development of more precise ways to
specify requirements and by the development of automated analysis tools to support verification and validation
using model-based design simulation. The availability of modeling and simulation programs such as
Matlab/Simulink23 have encouraged the simulation of controller behavior prior to flight testing, and this has been the
norm for many decades. Learning accuracy and controller stability are features usually tested in simulation, but
rarely are the requirements themselves integrated into the testing.

Figure 2. Software life cycle or development process.

American Institute of Aeronautics and Astronautics

092407

6

One aspect that is emerging, however, is the concept of using aircraft, environment, and controller simulation
models to fully evaluate software requirements at the outset of the controller design process.24 The idea is to
perform the end-stage system validation testing against the design requirements using the simulation model. The
block diagram for this process is shown in Fig. 3. This figure shows an iterative software development path that
features a model-based simulation. When the model is executed, the behavior of the controller can be observed and
its performance assessed to see if it meets the software requirements. If it does not, the software architecture block
diagrams can be modified and the tests repeated. The important feature of this approach is that it provides a means
to perform end-stage validation of the requirements prior to writing any code for the actual target host computer.
When complete, the software development for the actual control computer follows the same path as shown in Fig. 2,
but now it is far more likely that costly end-stage validation problems will be encountered.

A gap that exists in this scheme is the lack of well-accepted performance metrics with which to both describe the
requirements and create the necessary validation tests. For adaptive controllers, verification of learning algorithm or
system identification adaptation function is of paramount importance. However, straight-forward tests of this type
are difficult to establish. Reference 25, for example, holds that verifying the correct neural network weights have
been learned for a closed-loop system represents an NP-complete hard (generally unsolvable) problem. Although
the adaptive controller learning algorithm or system identification method can be coupled to the controller and the
whole system tested as a unit in simulation, this ignores the obvious merit of being able to prove proper learning
behavior as part of a certification process. One possibility may be to separately test learning algorithms and system
identification methods in simulation using contrived aircraft models that have a unique, known solutions. The
effects of measurement noise, process noise, persistent excitation, and ad hoc means to stop learning for low control
errors might then be easily evaluated for their effect on learning. One such attempt at doing such experimentation
for helicopter adaptive vibration and noise control algorithms is presented in Ref. 26. Such simulation cannot verify
the learning behavior of over-parameterized systems, yet can provide proof that the basic learning algorithm was
verified to work at least under ideal or known test conditions.

IV. Gap in Simulation Models for Adaptive Control

Since DO-178B presently allows certification credit to be obtained for both high-fidelity simulation testing as
well as actual flight testing, it is highly likely that simulation will become an important part of the certification
process for adaptive systems. As will be discussed below, some aspects of adaptive controller behavior can only be
efficiently evaluated in simulation, rather than by complex mathematical analysis. A difficulty for certification,
however, is the lack of uniform simulation methodologies for highly non-linear and non-deterministic flight control
systems. To get simulation credit for an adaptive controller, some standardization will be required. Hence one gap
area is held to be the definition of common simulation models to test various aspects of adaptive control system
performance. Aside from certification, development of such models would also foster the creation of better
controllers by providing a common benchmark for comparison.

Figure 3. Model-based design methods tests candidate software designs for conformance to requirements

prior to producing code for the target computer.

American Institute of Aeronautics and Astronautics

092407

7

A. Current State-of-the-Art

Adaptive control system simulation can be done in a variety of ways. To keep simulation costs down, the first
step in the simulation hierarchy is usually done on a desktop computer with a linearized model and linear
aerodynamics representations. Desktop simulation is usually followed by more complex types of simulation. One
of these is sub-scale or model testing using unmanned model aircraft. More commonly, the simulation complexity is
first increased through the incorporation of non-linear aerodynamic and structural dynamic models. These
simulations are usually run on a dedicated workstation computer platform. The next step level of fidelity includes
using the actual target flight control computer in the simulation, as well as other hardware placed in the control loop
such as cockpit control hardware and driving it with simulated sensor input. After this may follow motion-based
simulation by a test pilot in a simulated cockpit environment that receives both visual and motion feedback. The last
step is testing on the actual target flight vehicle.

The present state-of the art is to analyze adaptive system learning convergence and stability using simulation
environments thought to provide enough fidelity to model significant nonlinear aerodynamics, dynamics, and other
factors. Simulation provides a fairly rapid way to

• Evaluate and compare different learning algorithms,

• Tune control system gains and learning gains,

• Determine how much learning is actually being accomplished at each step of the simulation,

• Evaluate of the effect of process and measurement noises on learning convergence,

• Determine learning stability boundaries,

• Test algorithm execution speed on actual target flight computer,

• Conduct piloted evaluation of the learning system in a flight simulator, or,

• Simulate ad-hoc techniques of improving the learning process, such as adding persistent excitation to
improve identification and convergence, or such as stopping the learning process after error is less than a
specified amount.

A common practice done in simulation to evaluate the effect of controller gain selection is to use variations of
the Monte Carlo analysis method.27 In this method, the range of values for each parameter to be varied in simulation
are determined beforehand. Within this range, a finite number of parameter test values are selected. If nothing is
known about the parameter's expected value, then a uniform spacing throughout the parameter range is a logical
choice. Alternatively, if the expected value of a parameter is known, then the test values can be more closely spaced
near the expected value. Once all parameter test values have been selected, the matrix of simulation runs is
comprised of every parameter varied in combination with all other parameter values. So, if there are three
parameters that can take 5 unique values each, the number of simulation runs needed to evaluate the full matrix of
possible combinations is 35 or 243. Even for non-adaptive controller simulation, the Monte Carlo method can be
very time consuming considering the number of possible changes in the parameters needed to describe variations in
the flight condition (airspeed, altitude, weight, etc.). When number of parameters becomes larger (as in the case of
adaptive controllers), the number of simulation cases required can easily render the task of full Monte Carlo analysis
intractable, except for very sparse parameter variations that leave large portions on the state space unexplored. From
a certification standpoint, that is unacceptable.

B. Further Research Needed

A critical aspect of obtaining certification credit for simulation work will be proofs that the simulation fidelity is
acceptably high so that important nonlinear effects are not missed. As has been cited above, the lack of common
simulation model will likely inhibit both certification and the comparison of adaptive controller performance. The
development of benchmark models is not an easy task and represents an important gap in the certification pathway
for adaptive controllers.

Further work is needed to efficiently extend the important method of Monte Carlo analysis to adaptive controller
evaluation. One method being studied by NASA under the Aviation Safety Program to help close the certification
gap is to look at ways to extend the traditional Monte Carlo analysis method to assess the robustness of adaptive
control systems. At the Langley Research Center, an analysis tool called RASCLE (for Robustness Analysis for
Control Law Evaluation) has been developed to help explore combinations of learning system parameters and
operating conditions.28 The RASCLE simulation tool is used to interface with existing nonlinear simulations and
incorporates search algorithms to uncover regions of instability with as few runs as possible. RASCLE uses a
gradient algorithm to identify the direction in the uncertainty space along which the stability of the system is most

American Institute of Aeronautics and Astronautics

092407

8

rapidly decreasing. RASCLE provides an intelligent simulation-based search capability that can be used in Monte
Carlo simulation evaluations.29 At the Ames Research Center, another approach to extend Monte Carlo analysis has
been studied for the analysis of large, complex aerospace vehicles having highly coupled, nonlinear behavior and
many degrees of freedom. In this approach, an algorithm has been developed to limit the number of combinatorial
cases required of Monte Carlo analysis and to explore parameter interactions in a systematic (but not parametric)
fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a
Bayesian multivariate clustering technique (AutoBayes) and supervised learning of the critical parameter ranges
using the machine-learning tool TAR3, a treatment learner.30 Covariance analysis with scatter plots and likelihood
contours are used to visualize correlations between simulation parameters and simulation results.

The certification of adaptive controllers might also be aided by the development of probabilistic uncertainty
models for simulation in order to quantify their robustness. Reference 31 discusses the development of probabilistic
uncertainty models to assess the effect of parameter variations on controller stability. By making various cross-plots
using the controller parameters, the plot space can be divided into regions called the Failure Domain and the
Admissible Domain. By varying the parameters, probabilistic uncertainty methods can define a set of plants and
associate a weight (or probability) for each. This then facilitates a search for a robust controller by being able to
quantify how far away the controller class is from instability or some other problem by the parameter variation
method known as homothetic deformations.

The certification of adaptive systems will also likely be aided by the development of hybrid simulation models
that can model the full control system as an integrated whole, rather than each system in isolation from each other.
Hybrid models can be very complex and there are different definitions of “hybrid model” in usage today. Reference
32 defines a hybrid adaptive controller as a combination of direct and indirect adaptive control. Hybrid systems
have also been used to define systems comprised of finite state executive controllers coupled to a continuous domain
adaptive controllers.20,33 A related characterization of a hybrid system is one in which a finite state controller using
a continuous learning algorithm is coupled to a discrete model of the (normally) continuous environment.34 This
characterization might seem odd, but using a hybrid model to represent the continuous state vector as a discrete
variable is being studied as a means of leveraging the power of model checking software such as SPIN35, NuSMV36,
and JPF237,38. Model checking is a technique by which a finite state system model can be exhaustively explored to
make sure the system never reaches an unacceptable state. The method relies on being able to express adaptive
controller safety properties as assertions in temporal logic and having a suitable approximation function to convert
the continuous variables into discrete values.34

V. Gap in Proving Learning Stability and Convergence

The critical gap in the verification plans for adaptive control systems is the lack of procedures that can reliably
verify that the learning algorithm or system identification method learns correctly and converges to the correct
solution in an acceptable time. The provision of this guarantee is probably the most important aspect of a viable
verification plan for an adaptive control system. Other than learning and system identification, there is no difference
between adaptive and non-adaptive controllers, so proving the learning process is stable and convergent at all flight
conditions and vehicle configurations is of paramount importance.

Consider the neural network neuron shown in Fig. 4. A learning algorithm of the type

iii

i

wkwkw

efw

∆+=+

=∆

)()1(

)(

is typically used to update the weight values based on some error metric, e. This error could be formed as the
difference between the measured state of the aircraft and the state predicted using the model parameters, w. The
function f depends on the learning algorithm used (e.g., steepest descent, Gauss-Newton, Levenberg-Marquardt,
etc.). It can be seen in Fig. 4 that if the six weighted inputs are summed together to form one output, the values of
the weights offering a correct solution is not necessarily unique, nor even guaranteed to exist. System identification
methods for transfer matrix identification are alike in this respect because the neuron shown in Fig. 4 is
mathematically equivalent to a row-column matrix multiplication operation. There are many excellent texts39 that
have analyzed the necessary conditions for a unique solution. Since there are six inputs and one output, the
minimum requirement is that the outputs be known for at least 6 linearly independent input vectors. Then six
equations in six unknowns exist, and values of the weights can be determined, subject to the effects of noise on the

American Institute of Aeronautics and Astronautics

092407

9

Figure 4. Neural network neuron.

measurements. However, if the second input is the square of the first input, and the third input is the product of the
fourth input and the first input, and so on, the inputs are not linearly independent and the existence of a solution may
be possible only in the sense of finding a set of weights that is optimal according to some specified criteria. Neural
networks often employ such input combinations to offer superior curve fits to nonlinear data.

A. Current State-of-the-Art

Mathematical proofs of adaptive controller stability generally seek to show that the vehicle state returns to a
neighborhood about the undisturbed state for every defined disturbance. The most commonly used proof of this is
based on Lyapunov's second method.4,40-42 For linear time invariant systems of the form,

Axx =
•

where x is the state vector and A is a matrix, the Lyapunov method states that the system is stable (will return to the
origin) if a Lyapunov function V(x) can be found that is always positive and that has a time derivative that is always
negative or equal to zero, or,

()

() 0

0

≤

>

•

xV

xV

Unless much is known about the dynamics of the combined learning system and adaptive controller, the

Lyapunov function is usually chosen as the simple quadratic function,

() PxxxV T=

and the system is said to be stable if, and only if, given any symmetric positive-definite matrix Q, there exists a
symmetric positive-definite matrix P, which is the unique solution of the set of

QPAPAT −=+

equations.4 Although finding a Lyapunov function has in the past been somewhat of a cumbersome trial and error
process, recent advances in semidefinite programming and semialgebraic geometry have afforded more of an
algorithmic procedure to find valid Lyapunov functions through the use of the sum of squares (SOS) method.43

B. Further Research Needed

From a certification perspective, a weakness of the Lyapunov approach to prove stability is that it requires a
polynomial representation of the plant (A matrix) for all flight conditions of interest. If the values of this
representation change, perhaps due to aircraft damage, then nothing can be said about controller stability based on

American Institute of Aeronautics and Astronautics

092407

10

knowledge of the previous plant matrix. More importantly, the Lyapunov analysis only guarantees the ultimate
stability of the learning algorithm; the proof does not guarantee how fast the system returns to the origin. In
adaptive controller parlance, this means that Lyapunov proofs cannot guarantee the rate of learning convergence.
This is an important point for system performance, because if learning happens too slowly, an adaptive controller
may be rendered ineffective for the control task at hand.

Although the Lyapunov approach to stability determination rests on a firm mathematical foundation, a problem
using this method for the certification of adaptive control systems is that there is a gap between the mathematician’s
knowledge and the understanding of the certification official who needs to see a more easily understandable
explanation that offers easy assessment. A mathematical proof that is understood only by experts in the control field
will fail to inspire certification authorities that all due diligence has been done to ensure safety. Moreover, since
these proofs depend on knowledge of the “A” and “B” matrices of the control system representation,

BuAxx +=
•

, and these may actually change with time (e.g., with aircraft damage), Lyapunov proofs may well
lack the sufficient conditions necessary to ensure adaptive controller stability. A similar criticism holds for the
method of attempting to prove regions of controller stability through the use of barrier certificates.44,45 Like the
Lyapunov approach, this method seeks to prove that the state trajectories starting from a given set of initial
conditions never reach an unsafe region. It is also fairly difficult to understand without extensive mathematical
training. The barrier certificate represents a guaranteed upper bound on the probability that the system trajectories
do not reach the unsafe set of states. However, application of the method requires that the plant be expressed in
polynomial form and that the boundaries of the unsafe states also be expressed in the same way.

To help close this gap in the certification process, it is held that Lyapunov stability analysis needs to be
augmented by the development of metrics to measure adaptive control system stability and robustness. Metrics that
can assess how far away the system is from instability are needed that are analogous to the gain margin and phase
margin metrics used to assess non-adaptive, linear controllers. The metrics need to ones that can be easily assessed
and related to physical quantities that can be easily measured. A certification test to assess “how far away” from the
true values the learned or identified parameters of the control system are would be particularly valuable.

The lack of methods to evaluate the effects of measurement and process noise on learning convergence rates is
another gap. In theory, it is usually possible to show that learning convergence can be related to the degree of linear
independence present in the control input vectors.26 In practice, measurement noise and/or process noise removes
this independence as the controller converges to a near optimal control solution. In this case, the learning algorithm
or system identification method will diverge because the learning process seeks to find a relationship between small
(real) changes in the control vector to changes in the measurements resulting largely from measurement noise.
Since this relationship is a random variable (or like the noise distribution), the dynamics of the plant become lost.
The effect of noise on learning and identification performance as well as ad hoc approaches such as disabling
learning during period of low control error are difficult to analytically evaluate, and so simulation tools offer hope.

Yet another gap is that methods to find acceptable gains for stable learning must be found other than the time
intensive trial and error process. It has been found through analysis that high adaptation gains will often lead to high
frequency oscillation in the tracking errors, especially in poor signal to noise environments.4,32 This means that
acceptable gains for stable learning performance must be found by trial and error, and some means of high-fidelity
simulation to choose the compromise between rapid learning and oscillatory tracking would be useful.32

It is also known that convergent adaptive control system learning or system identification convergence usually
requires persistent excitation.2 This problem generally occurs when the controller computes the correct optimal
control before the system identification or learning method completely converges. If the controller is able to find a
control vector that effectively nulls the error between the desired state and measured state, then updates to the
learned or identified values based on that error signal will also tend to zero and the system will not learn until the
control error becomes higher. A persistent excitation signal added to the control signal yields more convergent
learning, but at the expense of poorer steady-state controller performance. An alternative is to disable the learning
process when the control error becomes low, but this requires further study. References 32 and 26 provide detailed
insight to this problem. Better simulation methods need to be developed to enable control engineers select the
correct degree of persistent excitation and to acquire a knowledge base from which to judge the how this excitation
effects the behavior of the actual control system.

VI. Gap in On-Line Monitoring Tools

The development of on-line tools to monitor adaptive controller performance after deployment may form a
necessary part of a certification plan. These tools would offer a way to make a system health management
assessment to indicate when controller learning is acceptably good or when the aircraft is beyond control. On-line

American Institute of Aeronautics and Astronautics

092407

11

tools of this nature may be required in the event analytical or simulation testing is unable to verify convergent, stable
learning from every possible flight condition and vehicle state..

A. Current State-of-the-Art

At the present time, tools to assess the performance of adaptive flight control systems are an area of great
research interest. One example of an on-line software assurance tool is the Confidence Tool46 developed under the
NASA Aviation Safety Program. This tool provides a useful metric to assess neural network weight convergence
using a Bayesian approach. The Confidence tool is a dynamic monitor which checks the output values of a neural
network based controller and determines a confidence measure to evaluate the correctness of the neural network
weights based on a statistical model of the learning system. The Confidence tool dynamically calculates a metric of
neural network learning called the confidence measure. This value can be used as a metric related to control system
health.

An on-line monitoring tool for in-flight stability evaluation has been developed by the NASA Dryden Flight
Research center for the X-38 crew return vehicle.47 This method introduced a small-amplitude tailored-force
excitation to the elevator and rudder control surfaces at specific frequencies. The banded frequency response was
then used to calculate the stability margins of the flight control system using a modification of the method in Ref.
48. A recursive Fourier transformation was used to make the method compatible with real-time calculation. The
stability calculated by the on-line method was shown to compare well to results obtained using the X-38 nonlinear
simulation. For the certification of adaptive control systems, such a method might be extended to evaluate adaptive
control system stability and make on-line predictions of unstable regions in order to avoid them.

B. Further Research Needed

While research is needed to develop on-line, adaptive controller health assessment tool, another need is to extend
formal methods to analyze executive flight controller software of the real-time operating system. Formal methods
have almost exclusively been developed for the assessment of finite state systems, rather than for the continuous
domain of adaptive control. Nevertheless, formal analysis tools may be extendable to the verification of executive,
outer-loop (or supervisory) adaptive controllers. For example, Ref. 49 describes an application of the NASA Ames
Java PathFinder model checker to the control the guidance of a robotic vehicle. Using compositional verification to
verify that the interface logic between components will function properly when integrated together is a valuable
concept that works well when combined with model checking of large systems. The difficult part of extending these
methods to adaptive control is finding ways to represent the continuous state vector and system safety assertions as
finite state temporal logic assertions. If a hybrid model abstraction for the adaptive system can be found, then the
adaptive control states become finite values. This allows for the recognition of previous “states” in the model
checking sense of the word, and hence an exploration of the continuous model checking space becomes possible. Of
course, this search is exhaustive only to the extent the approximation function is valid. If the approximation
function is too coarse, important states will likely be missed.

VII. Gap in Adaptive Controller Certification Plans

The software development process described in RTCA DO-178B for airborne software recommends that the
verification and validation plans are developed before any code is written. Verification and validation plans for
certifiable software need to provide a test matrix together with an explanation why each test point has been chosen
and how together all of the test points will provide adequate test coverage. DO-178B recommends that the report
should include a description of the conditions under which each test is to be performed and state the pass/fail
criteria. Step by step instructions for performing each test are to be provided along with instructions with how to
evaluate the test results. DO-178B stresses that it is important that these procedures and criteria be developed prior
to the actual testing.

A difficulty with even non-adaptive controller development is that the usual path of controller software
development is analysis immediately followed by desktop simulation and then other higher-fidelity simulation test,
possibly including sub-scale testing. The simulation tests are not formal software verification tests, but rather just
attempts to evaluate the performance of the learning algorithm and controller performance. The dissonance between
this ad hoc development process and the orderly process advised by DO-178B indicates the need for a better
certification plan for adaptive control systems development that is more attuned to real-world development
practices.

American Institute of Aeronautics and Astronautics

092407

12

A. Current State-of-the-Art

It is not possible to mention all of the on-going efforts by industry and government offices to develop adaptive
flight control systems.10,13,15,16,35,50-53 The Air Force VVIACS (Verification and Validation of Intelligent and
Adaptive Control Systems)54 and the NASA IRAC (Intelligent Resilient Adaptive Control)55 represent multi-year
programs with industry partners that have been initiated to define methodologies and test procedures for adaptive
flight control systems. Although the VIVIACS program has ended, the IRAC Program continues to be sponsored by
the NASA Office of Aviation Safety. The goal of the IRAC Program is to conduct research to advance the state of
aircraft flight control to provide onboard control resilience for ensuring safe flight in the presence of unforeseen,
adverse conditions. The objective is to advance the state-of-the-art of adaptive controls as a design option to provide
enhanced stability and maneuverability margins for safe landing. It is anticipated that the outcome of the IRAC
project research will be a set of validated, multidisciplinary integrated aircraft control design tools and techniques
for enabling safe flight in the presence of adverse conditions such as structural damage, control surface failures, or
aerodynamic upsets. With regard to the certification of adaptive flight control systems, it is hoped that the analysis,
simulation, sub-scale and full-scale flight tests of this research program will help form the basis for a valid Plan for
Software Aspects of Certification (PSAC) for adaptive flight control systems, or perhaps even the basis for a better
certification process for adaptive flight controllers.

B. Further Research Needed

Further research is needed to determine the best practices for a workable adaptive control system certification
plan. Besides the gaps identified above, there are several other aspects which need to be considered as well. A very
practical aspect of a flight control systems is that DO-178B advises that safety-critical software should provide a
measure of software redundancy and fault tolerance. The preferable level of redundancy is two systems doing the
same thing, but using different calculation methods to arrive at the same answer. This is referred to in DO-178B as
redundancy achieved by using dissimilar implementations. A problem with using this technique with adaptive flight
controller software is that the dissimilar implementations could take different control trajectories to achieve the same
end state and yet not be comparable along the way. Another aspect of a viable certification plan is to address the
level of fault tolerance required of the control system. Verification of software health management software
operating on partitioned real-time operating systems (RTOS) to ensure any failures in the controller remain isolated,
will be critically important for both aeronautics and space applications.56 Guidelines for these systems in not
provided in DO-178B, but rather in ARINC-653.57

More research needs to be conducted in cooperation with the FAA to explore alternative means of compliance to
DO-178B. Once a sufficient set of best practices for the verification and validation of adaptive flight control
systems becomes available, it is possible that these practices could be grouped to form a Safety Case argument for
adaptive flight control systems. Safety cases have been created for certification of nuclear industry in Europe and
off-shore oil refineries in Australia.58,59 A safety case is a document that identifies all hazards and risks, describes
how the risks are controlled, and describes the safety management plan to ensure the controls and guidelines are
effectively and consistently applied. The safety case represents a collection of processes to ensure all identified
risks are mitigated. In this way, the development of stability analysis methods for adaptive controllers, metrics for
adaptive controller performance (or learning), hybrid high-fidelity simulation methods, the usage of formal methods,
and other technologies mentioned above might become part of the safety case. In essence, the safety case argues for
software certification on the basis that every best practice to ensure safety has been followed. Whether or not this is
the same thing as proving the system is safe is a valid question. In fairness, however, any certification procedure
fulfilling the spirit of the DO-178B guidelines might also end up not being safe.

VIII. Summary

This paper has provided an examination of the gaps between current state-of-the-art methodologies used to
certify airborne software and what is likely to be needed to satisfy FAA airworthiness requirements for the
certification of adaptive flight control systems. Adaptive controllers (as defined herein) use system identification or
some form of on-line learning algorithm to identify optimal controller gain settings, system transfer matrices, and/or
stability control derivative matrices in real-time. The gaps presented in this paper include the lack of a certification
plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive
controller stability and convergence, the need to develop metrics to evaluate adaptive controller performance at
normal and off-nominal flight conditions. This paper has also presented for each gap area a description of the
present day state-of-the-art and what further research efforts will likely be needed to close the gaps remaining in
current certification practices. The areas addressed include advances in hybrid simulation methods, the development

American Institute of Aeronautics and Astronautics

092407

13

of new methods to analyze learning algorithm stability and convergence rates, the development of performance
metrics for adaptive controllers, the application of formal software assurance methods, the development of on-line
software monitoring tools for adaptive controller health assessment, and the creation of a certification case for
adaptive system safety of flight.

References
1Åström, K. J. and Wittenmark, B. Adaptive Control, 2nd ed. Reading, MA: Addison-Wesley,1995.
2Ioannou, P. A. and Sun, J. Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall, 1996.
3Landau, I. D., Adaptive Control: The Model Reference Approach, New York, NY: Marcel Dekker, 1979.
4Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems, Englewood Cliffs, NJ:Prentice Hall, 1989.
5Sastry, S. and Bodson, M., Adaptive Control: Stability, Convergence, and Robustness, Englewood Cliffs, New Jersey:

Prentice-Hall, 1994.
6Ogata, K., Modern Control Engineering, 4th Edition, Pearson Education, Nov 2001.
7Bryson, A. E. and Ho, Y. C., Applied Optimal Control, Taylor and Francis, 1975.
8Kaneshige, John, and Gundy-Burlet Karen, “Integrated Neural Flight and Propulsion Control System,” Proceedings of the

AIAA Guidance, Navigation, and Control Conference, AIAA-2001-4386, August 2001.
9Williams-Hayes, P.S., “Flight Test Implementation of a Second Generation Intelligent Flight Control System,” Technical

Report NASA/TM-2005-213669, 2005.
10Nguyen, N., Krishnakumar, K., Kaneshige, J., and Nespeca, P., “Dynamic and Adaptive Control for Stability Recovery of

Damaged Asymmetric Aircraft,” Proceedings of AIAA Guidance, Navigation and Control Conf., Keystone, CO, Aug. 2006.
AIAA 2006-6049.

11Kaneshige, J., Bull, J., and Totah, J., “Generic Neural Flight Control and Autopilot System,” AIAA-2000-4281.
12Hall, R., Barrington, R., Kirchwey, K. and Alaniz, A., “Shuttle Stability and Control During the Orbiter Repair Maneuver,”

AIAA Guidance, Navigation and Control Conference and Exhibit, 2005, AIAA 2005-5852.
13Johnson, E. N. and Calise, A. J., "Limited Authority Adaptive Flight Control for Reusable Launch Vehicles," Journal of

Guidance Control and Dynamics, vol. 26, pp. 906-913, 2003.
14Hovakimyan, N., Kim, N., Calise, A.J., Prasad, J.V.R., and Corban, E.J., “Adaptive Output Feedback for High-Bandwidth

Control of an Unmanned Helicopter,” AIAA Guidance, Navigation and Control Conference, AIAA-2001-4181, 2001.
15Lavretsky, E. and Wise, K., “Adaptive Flight Control for Manned/Unmanned Military Aircraft,” Proceedings of American

Control Conference, Portland, OR, June 2005.
16Rysdyk, R.T. and Calise, A.J., “Fault Tolerant Flight Control via Adaptive Neural Network Augmentation,” AIAA

Guidance, Navigation, and Control Conference, AIAA-1998-4483, 1998.
17Johnson, E.N., Calise, A.J., El-Shirbiny, H.A., and Rysdyk, R.T., “Feedback Linearization with Neural Network

Augmentation Applied to X-33 Attitude Control,” AIAA Guidance, Navigation, and Control Conference, AIAA-2000-4157,
2000.

18Calise, A. J., Lee, S., and Sharma, M., "Development of a Reconfigurable Flight Control Law for the x-36 Tailless Fighter
Aircraft," Proceedings of the AIAA Guidance, Navigation, and Control Conference, Denver, CO, Aug. 2000.

19Calise, A. J., Sharma, M., and Corban, J. E. "Adaptive Autopilot Design for Guided Munitions," Journal of Guidance,
Control, and Dynamics, vol. 23, pp. 837-843, 2000.

20Jacklin, S. A., Schumann, J., Gupta, P., Richard, M., Guenther, K., and Soares, F., “Development of Advanced Verification
and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications,” Proceedings of the
AIAA Infotech@Aerospace Conference, Crystal City, VA, Sept. 2005.

21Software Considerations in Airborne Systems and Equipment Certification, Document No RTCA (Requirements and
Technical Concepts for Aviation) /DO-178B, December 1, 1992.

22Santhanam, V. “Can Adaptive Flight Control Software be Certified to DO-178B Leve A?”, NASA and FAA Software and
CEH Conference, Norfolk, VA, July 26-28, 2005.

23MATLAB, The MathWorks Inc. http://www.mathworks.com/products.
24Pires, C., Cannon, H., Christa, S., Limes, G., Dorais, G., Branson, M., Kulkarni, N., Viazzo, D., Brown, J., Kelly, A., and

Logan, M., “Verification and Validation Strategies and Vision,” NASA Ames Live Webinar for The Mathworks, June 26, 2008.
25Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H.

Freeman and Company, 1979.
26Jacklin, S. A., “Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control,” NASA TP

1998-207687, May 1998.
 27Belcastro, Christine, and Belcastro, Celeste, "On the Validation of Safety Critical Aircraft Systems, Part I: Analytical &

Simulation Methods,” Proceedings of AIAA Guidance Navigation and Control Conference, Austin TX, August 2003.
 28Bird, R.: RASCLE Version 2.0: Design Specification, Programmer’s Guide, and User’s Guide. Baron Associates, Inc.,

February, 2002.
 29Belcastro, Christine, and Belcastro, Celeste, "On the Validation of Safety Critical Aircraft Systems, Part I: Analytical &

Simulation Methods,” Proceedings of AIAA Guidance Navigation and Control Conference, Austin TX, August 2003.
 30Schumann, J., Burlet, K. G., Pasareanu, C., Menziers, T., and Barrett, T., “Tool Support for Parametric Analysis of Large

Software Simulation Systems,” submitted to Automated Software Engineering Conference, L'Aquila, Italy, Sept. 2008.

American Institute of Aeronautics and Astronautics

092407

14

 31Crespo, L. G. and Kenny, S. P., “Robust Control Design for Systems with Probabilistic Uncertainty,” NASA/TP–2005–
213531, March 2005.

 32Nguyen, N., and Jacklin, S. A., “Neural Net Adaptive Flight Control Stability, Verification and Validation Challenges, and
Future Research,” IJCNN Conference, Orland Florida, 2007.

 33Tomlin, C. and Greenstreet, M. R., editors. Hybrid Systems: Computation and Control, 5th InternationalWorkshop, HSCC
2002, Proceedings, volume 2289 of Lecture Notes in Computer Science. Springer, 2002.

 34Clarke, E. M., Fehnker, A., Han, Z., Krogh, B. H., Stursberg, O., and Theobald, M., " Verification of Hybrid Systems
based on Counterexample-Guided Abstraction Refinement," in Tools and Algorithms for the Construction and Analysis of
Systems, 9th Intl. Conf., TACAS 2003, pages 192–207. Springer, 2003.

 35Holzmann, G. J., The Spin Model Checker Primer and Reference Manual, Addison-Wesley, Boston, MA, 2004.
 36McMillan, K., Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA, 2003.
 37Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F., Model Checking Programs, Kluwer Academic Publisher, 2002.
 38Havelund, K., “Using Runtime Analysis to Guide Model Checking of Java Programs,” SPIN Model Checking and

Software Verification, Vol. 1885 of Lecture Notes in Computer Science. pp. 245–264, Springer, 2000.
 39Kailath, T., Linear Systems, Prentice-Hall Information and System Sciences Series, 1979.
 40Wise, K. A., Lavretsky, E., and Hovakimyan, N., Robust and Adaptive Control Workshop, American Control Conference,

Seattle, WA, June 11-13, 2008.
 41Khalil, H. K., Nonlinear Systems, Prentice Hall, 3rd Edition, 2001.
 42Slotine, J-J. E. and Li, W., Applied Nonlinear Control, Prentice Hall, New Jersey, 1991.
 43Prajna, S., Papachristodoulou, A., and Parrilo, P. A., “Introducing SOSTOOLS: A general purpose sum of squares

programming solver,” in Proceedings IEEE Conference on Decision and Control, 2002, available at
http://www.cds.caltech.edu/sostools.

 44Prajna, S., Jadbabaie, A., and Pappas, G. J., “Stochastic Safety Verification Using Barrier Certificates,” Proceedings of
43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 2004.

 45Prajna, S., and Jadbabaie, A., “Safety Verification of Hybrid Systems Using Barrier Certificates,” in Hybrid Systems:
Computation and Control. Heidelberg: Springer-Verlag, 2004.

 46Jacklin, S. A., Schumann, J., Bosworth, J, Williams, P., and Larson, D., " Test Results of a Tool and Method for In-Flight,
Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft,” 7th World Congress on Computational
Mechanics, Los Angeles, CA, July 2006.

 47Bosworth, J. T., and Stachowiak, S. J., "Real-Time Stability Margin Measurements for X-38 Robustness Analysis,"
NASA/TP-2005-212856, Feb 2005.

 48Bosworth, J. T. and Burken, J. J., "Tailored Excitation for Multivariable Stability-Margin Measurement Applied to the X-
31A Nonlinear Simulation,” NASA TM-113085, 1997.

 49Scherer, S., Lerda, F., and Clarke, E., “Model Checking of Robotic Control Systems,” Proceedings of ISAIRAS 2005
Conference, Munich, Germany, Sept. 5-8, 2005

50Cao, C. and Hovakimyan, N.,. “Design and Analysis of a Novel L1 Adaptive Control Architecture, Part I: Control Signal
and Asymptotic Stability,” Proceedings of American Control Conference, pages 3397–3402, Minneapolis, MN, June 2006.

 51Krishnakumar, K., Limes, G., Gundy-Burlet, K., and Bryant, D., ”An Adaptive Critic Approach to Reference Model
Adaptation,” AIAA Guidance, Navigation, and Control Conference, AIAA-2003-5790, 2003.

 52Tao, G., Chen, S. H., Fei, J. T., and Joshi, S. M., “An Adaptive Actuator Failure Compensation Scheme for Controlling a
Morphing Aircraft Model,” Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003.

 53Liu, Y., Tang, X. D., Tao, G., and Joshi, S. M., “Adaptive Failure Compensation for Aircraft Tracking Control Using
Engine Differential Model,” Proceedings of the 2006 American Control Conference, Minneapolis, MN, June 2006.

 54Buffington, J. M., Crum, V., Krogh, B., Plaisted, C., and Prasanth, R., "Verification and Validation of Intelligent and
Adaptive Control Systems," 2nd AIAA Unmanned Unlimited Systems Conference, San Diego, CA, Sept. 2003.

 55Totah, J., Krishnakumar, K., and Viken, S., “Stability, Maneuverability, and Safe Landing in the Presence of Adverse
Conditions,” Report of NASA Integrated Resilient Aircraft Control Project, April 13 2007.

56Jacklin, S. A., Lowry, M. R., Hayden, S., Day, L., Hicks, K. A., and Brinza, D. E., “Vehicle and System-Level Design
Considerations to Facilitate the CEV Hardware-Software Integration, V&V, and Certification Processes,” NASA Ames Research
Center, Intelligent Systems Division, Final Report to JSC Task 3, October, 2006.

 57ARINC Specification 653-1, “Avionics Application Software Standard Interface,” Airlines Electronic Engineering
Committee, October 16, 2003.

 58Williams, D. K. and Neilan, P. J., “The Role of Safety Cases in Risk Management,” European Convention on Security and
Detection, Brighton, UK, May 1995.

 59Handbook, Preparation and Evaluation of Safety Cases, Bentham Technical Training Course, published by Balogh
International, Inc., May 1994.

